
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington 

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.  

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of 

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

Algebraic Information Theory and Stochastic Resonance for 

Binary Input Binary Output Channels

14.  ABSTRACT

16.  SECURITY CLASSIFICATION OF:

In this paper, we analyze the information theoretic

aspects of the phenomenon of stochastic resonance in terms of

the algebraic properties of the channel matrix. The binary-input

binary-output channel model under discussion is a threshold

system. We offer an algebraic view of Kosko’s Forbidden Interval

1. REPORT DATE (DD-MM-YYYY)

4.  TITLE AND SUBTITLE

21-08-2012

13.  SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department 

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; distribution is unlimited.

UU

9.  SPONSORING/MONITORING AGENCY NAME(S) AND 

ADDRESS(ES)

6. AUTHORS

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office 

 P.O. Box 12211 

 Research Triangle Park, NC 27709-2211

15.  SUBJECT TERMS

Stochastic resonance, information theory, forbidden interval theorem.

Ira S. Moskowitz, Paul Cotae, Pedro N. Safier

The University of the District of Columbia

Graduate Studies

University of the District of Columbia

Washington, DC 20008 -0000

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

Conference Proceeding

17.  LIMITATION OF 

ABSTRACT

UU

15.  NUMBER 

OF PAGES

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

5c.  PROGRAM ELEMENT NUMBER

5b.  GRANT NUMBER

5a.  CONTRACT NUMBER

W911NF-11-1-0144

206022

Form Approved OMB NO. 0704-0188

58962-NS-REP.4

11.  SPONSOR/MONITOR'S REPORT 

NUMBER(S)

10.  SPONSOR/MONITOR'S ACRONYM(S)

    ARO

8.  PERFORMING ORGANIZATION REPORT 

NUMBER

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER

Paul Cotae

202-274-6290

3. DATES COVERED (From - To)

Standard Form 298 (Rev 8/98) 

Prescribed by ANSI  Std. Z39.18

-



Algebraic Information Theory and Stochastic Resonance for Binary Input Binary Output Channels

Report Title

ABSTRACT

In this paper, we analyze the information theoretic

aspects of the phenomenon of stochastic resonance in terms of

the algebraic properties of the channel matrix. The binary-input

binary-output channel model under discussion is a threshold

system. We offer an algebraic view of Kosko’s Forbidden Interval

Theorem, and extend his result in certain cases.

Conference Name:  Proceedings IEEE 46th Annual Conference on Information Sciences and Systems-CISS 2012, Princeton 

Conference Date:  March 21, 2012



Algebraic Information Theory and Stochastic
Resonance for Binary-Input Binary-Output Channels

Ira S. Moskowitz
Center for High Assurance Computing

Code 5540, Naval Research Laboratory, Washington, DC 20375
Email: ira.moskowitz@nrl.navy.mil

&
Paul Cotae

Electrical Engineering Department
School of Engineering and Applied Sciences

University of the District of Columbia, Washington, DC 20008
Email: pcotae@udc.edu

&
Pedro N. Safier

S&J Solutions LLC
107 S. West St. PMB 509, Alexandria, VA 22314

Email: pedro-safier@sj-solutions.com

Abstract—In this paper, we analyze the information theoretic
aspects of the phenomenon of stochastic resonance in terms of
the algebraic properties of the channel matrix. The binary-input
binary-output channel model under discussion is a threshold
system. We offer an algebraic view of Kosko’s Forbidden Interval
Theorem, and extend his result in certain cases.

Index Terms—Stochastic resonance, information theory, for-
bidden interval theorem.

I. INTRODUCTION

In this paper, we analyze the information theoretic aspects
of the phenomenon of stochastic resonance in terms of the
algebraic properties of the channel matrix for a simple, but
physically meaningful, threshold based system.

The communication channels under study in this paper
are binary-input binary-output discrete memoryless channels
[11]. That is, the channel is discrete, memoryless, and has a
stationary channel matrix, the input random variable X has
values {ι1, ι2}, and the output random variable Y has values
{o1, o2}. The event X = ιk is the event that the symbol ιk is
input to the channel, and the event Y = ok is the event that
the channel output is the symbol ok. We use the shorthand
notation of a (2,2) channel, respectively.

We use the (2, 2) channel to study the phenomena of
stochastic resonance (SR) that arises in the discrete time
threshold neuron model as first described by [4]. A nice
introduction to this is given in [5, Sec. 2]. However, we closely
follow the mathematics of [2] in this paper.

Algebraic information theory (AIT) is an approach to Shan-
non information theory based upon the algebraic properties,
such as the determinant and eigenvalues, of the channel matrix
(e.g. [9], [3] ). This idea was briefly discussed in [13]. We view
Kosko’s FIT [5, Thm. 1], [6], [7] in light of AIT.

I-A. Mutual Information and Capacity for (2,2) Channels

The channel matrix represents the conditional probability
relationships between the input and output symbols. That is,
a = P (o1|ι1), ā = P (o2|ι1), b = P (o1|ι2), and b̄ = P (o2|ι2),
where, in general, (·) = 1−(·). We have P (X = ι1) = x1 and
P (X = ι2) = x2, P (Y = o1) = y1 and P (Y = o2) = y2.
Since x2 = x1 we simplify notation further and set x :=
x1 and, similarly, y := y1. We have the following equivalent
expressions:

(y1, y2) = (x1, x2) ·
(
a ā
b b̄

)
, (y, ȳ) = (x, x̄) ·

(
a ā
b b̄

)
. (1)

and the channel matrix M , where

M :=

(
a ā
b b̄

)
. (2)

We see that the (2,2) channel is completely described by the
channel matrix M . However, since M is a stochastic matrix,
M itself is completely described by the 2-tuple (a, b). Thus,
a (2,2) channel is uniquely identified with a point in the unit
square [0, 1]× [0, 1].

Using standard Shannon information theory [15] we have
the mutual information

I = H(Y )−H(Y |X) (3)

where H(Y ) is the entropy1 of the random variable Y , which
for the (2,2) channel is the same as h(y) and H(Y |X) is
the conditional entropy. Holding (a, b) fixed, we have that the

1Unless noted otherwise all logarithmic bases are base 2, where log(x)
is the base 2 logarithm of x. If we wish to use the natural logarithm we
will use the notation ln. The binary entropy function is denoted as h(x) :=
−x log(x)−(1−x) log(x), and the natural binary entropy function is denoted
as he(x) := −x ln(x)− (1− x) ln(x).



mutual information given by Eq. (3) I is a function of x,
setting f(x) = (a− b)x+ b, we have that

I(x) = h (f(x))− xh(a)− x̄h(b). (4)

The capacity C of the (2,2) channel determined by the
parameters (a, b) is the well-defined continuous maximum of
the mutual information ([16, Eq. 5], Ash [1, Eq. 3.3.5], or [8],
[9])

C(a, b) = āh(b)−b̄h(a)
a−b + log

(
1 + 2

h(a)−h(b)
a−b

)

= log
(
2

āh(b)−b̄h(a)
a−b + 2

bh(a)−ah(b)
a−b

) (5)

where C(a, a) := 0. Note that capacity is zero if and only if
a = b (concavity arguments show that for all x, I(x) ≡ 0 iff
a = b). One also has the symmetries

C(a, b) = C(b, a) = C(1− a, 1− b) = C(1− b, 1− a) . (6)

In summary, C(a, b) is defined and continuous for all (a, b) ∈
[0, 1]× [0, 1], is zero iff a = b, and is 1 if and only if (a, b) =
(1, 0) or (0, 1), with the symmetries as illustrated in Figure 1.

Fig. 1. Capacity as a function of (a, b).

Fig. 2. Capacity level sets

The level sets of capacity can be seen in both Figures 1 & 2.
To solve for b in terms of a, or visa versa, for a given level set
does not seem to have a closed form solution due to the high
non-linearity of the capacity expression involving logarithms
and the binary entropy function. This makes working with
them directly rather difficult, hence the approximations as
developed in [11], [12].

II. THE (2 |2 ; θ) THRESHOLD SYSTEM

The (2 |2 ; θ) threshold system is a binary-input binary-
output discrete time threshold system. We will not go into
detail on the neuroscience background of (discrete time)
threshold systems. We point the interested reader to [10]. We
start, though, with an exposition as given by [2], then we nor-

malize those results into the notation of [7]. We borrow freely
from [13] in what follows. We use the notation (α,β|2 ; θ)
to specifically denote a (2 |2 ; θ) threshold system with inputs
α or β with an understood additive noise distribution. If we
wish to make the noise distribution explicit we will write
(2 |2 ; θ;ND)

The inputs to the threshold system are a signal X taking
on the values α or β. The (disturbance) noise is added to the
transmission signal resulting in the received signal R:

R = X+ND . (7)

which is now thresholded resulting in Y

Y =

{
o1, if R ≤ θ;

o2 if R > θ.
(8)

II-A. Shannon Model of the (0, 1|2 ; θ;N (µ,σ2)) threshold
system

N (µ,σ2) is a normal distribution with mean µ and variance
(power) σ2.

M =

(
a 1− a
b 1− b

) 0
a !!

1−a
""!!!!!!!!!!!!! o1

1

b ##""""""""""""" 1−b !! o2

(9)

The inputs to the channel are 0 or 1, and the outputs are
the two distinct symbols o1 and o2. The actual output values
do not affect the information theoretic analysis of the problem
(the input values do!).

Following2 [2], we are letting ND be N (0,σ2), with
probability density function fσ(t) = 1√

2π·σ exp(−t2

2σ2 ), and
cumulative distribution function Fσ(x) =

∫ x
−∞ fσ(t)dt. We

denote the standard normal ( N (0, 1) ) cumulative distribution
function as

Φ(x) :=
1√
2π

∫ x

−∞
e

−t2

2 dt . (10)

Change of variables shows that Fσ(x) = Φ(x/σ). We take
σ > 0, and look at the limiting situations as σ → 0+.

The input random variable X represents the physical trans-
mission of a signal X. In our situation X takes on two distinct
values, 0 or 1. The disturbance is added to the transmission
signal resulting in the received signal R:

R = X+ND . (11)

The output random variable is determined as:

Y =

{
o1, if R ≤ θ;

o2 if R > θ.
(12)

Therefore, we easily have [2] that
a = P (0 +N (0,σ2) ≤ θ) = P (N (0,σ2) ≤ θ) = Fσ(θ), and
b = P (1+N (0,σ2) ≤ θ) = P (N (0,σ2) ≤ θ−1) =Fσ(θ−1).

2In general, the noise need not have such a simple form, and is a subject of
considerable research such as a general dynamical model in terms of stochastic
differential equations ([14]). However, this paper is only concerned with the
zero mean normal distribution ( N (0,σ2) ).



So, the channel matrix is of the form3

M =

(
a 1− a
b 1− b

)
=



 Fσ(θ) Fσ(θ)

Fσ(θ − 1) Fσ(θ − 1)





=



 Φ
(
θ
σ

)
Φ
(
θ
σ

)

Φ
(
θ−1
σ

)
Φ
(
θ−1
σ

)



 . (13)

So we have that the capacity, in closed form, is

C (Fσ(θ), Fσ(θ − 1)) = (14)

log

(
2

Fσ(θ)·h(Fσ(θ−1))−Fσ(θ−1)·h(Fσ(θ))
Fσ(θ)−Fσ(θ−1)

+ 2
Fσ(θ−1)·h(Fσ(θ))−Fσ(θ)·h(Fσ(θ−1))

Fσ(θ)−Fσ(θ−1

)
.

Unfortunately, this does not seem to be a very tractable
expression. This is where we turn to algebraic information
theory. Keep in mind that

C (Fσ(θ), Fσ(θ − 1)) = C

(
Φ

(
θ

σ

)
,Φ

(
θ − 1

σ

))
. (15)

III. ALGEBRAIC INFORMATION THEORY

First, we review some notation and results from [9]. We
say that a (2,2) channel is nonnegative if a ≥ b, and it is
positive if a > b. The negative channels are those with a <
b, and the zero channels are those with a = b. The set of
zero channels is identical to the set of channels with zero
capacity. In [9], the directed complete partially ordered set
(dcpo) of compact subintervals of the unit interval with the
Scott topology I[0, 1] is studied. The nonnegative (2,2) channel

(a, b) with matrix M =

(
a ā
b b̄

)
is uniquely identified (under

a monoid isomorphism) with the interval [b, a] ∈ I[0, 1].
Algebra fact 1

What is important for us is that [9, Thm. 4.9] tells us for
nonnegative channels that

Theorem 3.1: (AIT ordering theorem)

a < a′ =⇒ C(a, b) < C(a′, b), and

b′ < b =⇒ C(a, b) < C(a, b′) . (16)

This seemingly obvious4 result simply follows by taking the
partial derivatives of the mutual information.

Algebra fact 2
Keep in mind that the determinant of the channel matrix is

detM = a− b . (17)

The following fundamental relation reveals much about capac-
ity in terms of the determinant. It is shown in [11] that

(a− b)2

2 ln(2)
≤ C(a, b) ≤ |a− b| . (18)

3Recall x̄ = 1− x.
4The authors of [9] were surprised that this result, to the best of their

knowledge, did not exist in the literature prior to [9].

Fig. 3. |a − b| level sets, compare to level sets of capacity in Fig. 2.

It is worth noting that the level sets of (a−b)2

2 ln(2) are identical,
up to the level set , of the level sets of |a − b| (Fig. 3). In
essence what we are suggesting is a linearization of channel
capacity. We wish to use this approach to discuss SR, and
compare the linear approach to Kosko’s FIT [5, Thm. 1], [6],
[7].

Also keep in mind that for nonnegative channels

(a− b)2

2 ln(2)
≤ C(a, b) ≤ a− b . (19)

Therefore, for a nonnegative channel analyzing how
detM = a − b changes, gives us guidance on the capac-
ity behavior. Therefore, we can approximate the non-linear
behavior of capacity by the linear behavior of detM , in
conjunction with the AIT ordering theorem. In this paper, we
will concentrate on applying the AIT ordering theorem.

IV. CHAPEAU-BLONDEAU RESULTS IN LIGHT OF
ALGEBRAIC INFORMATION THEORY
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Fig. 4. Normal distributions µ = 0, with σ = 0.60 (blue), σ = 1.0 (red).
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Fig. 5. Fσ(θ) = Φ(θ/σ) with σ = 0.60 (blue), σ = 1.0 (red).

It is interesting that there is ambiguity surrounding the
formal definition of SR [10]. The essence of SR is that
increasing noise can help the signal to noise ratio (SNR). Since
variance is the power of a normal distribution signal, we adopt
the following definition of SR.

For a (0, 1|2 ; θ;N (0,σ2)) threshold system, we denote the
Shannon channel capacity with θ fixed and variable σ as
Cθ(σ).

Definition 4.1: We say that a (0, 1|2 ; θ;N (0,σ2)) threshold
system exhibits SR (as a function of σ) iff there exists 0 < σ1
and σ2 such that σ1 < σ2 and Cθ(σ1) < Cθ(σ2).

This goes along with the concept of adding noise (σ2 is
the power, and σ = 0 corresponds to no noise) to amplify the
intended signal.

In [2], and in more detail in [13], it is graphically demon-
strated and discussed that for 0 ≤ θ ≤ 1 there is no SR, but
for θ < 0 or θ > 1 there is SR as σ goes from zero to infinity.
Kosko’s FIT [5], [6] can be used to prove this, but let us take
an algebraic approach which we will later use for an algebraic
proof of the FIT in general.

In Figure 6 (see [13, Fig. 3] we see that there is no SR for
θ ∈ {.8, .9, .95, .99, 1}, and there is SR with a single hump
for θ ∈ {1.01, 1.05, 1.1, 1.2}.
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Fig. 6. Capacity, for θ ∈ {.8, .9, .95, .99, 1, 1.01, 1.05, 1.1, 1.2}, as a function of σ.

Theorem 4.2: A (0, 1|2 ; θ;N (0,σ2)) threshold system ex-
hibits SR if and only if θ /∈ [0, 1].

Proof: It is shown in [13, Thm1.1] that
C.5+d(σ) = C.5−d(σ). Therefore it suffices to show the
threshold system does not exhibit SR for θ ∈ [.5, 1], and that
it does exhibit SR for θ > 1. (See Figs. 4 & 5).

ONLY IF part ⇐
— For θ ∈ [.5, 1)
Since a = Φ(θ/σ) we see that since θ > 0, a decreases as σ
increases. On the other hand, b = Φ(θ − 1) increases, since
θ−1 < 0. Since a decreases and b increases, the AIT theorem
tells us capacity decreases as σ increases.
— For θ = 1
As above, a decreases as σ increases. However, b = Fσ(0) ≡
1/2 for all σ. Since a decreases and b is constant the AIT
theorem still tells us capacity decreases as σ increases.

Thus, there is no SR for θ ∈ [.5 : 1].

IF part ⇒
— For θ > 1
In this situation both a and b decrease as σ increases, so we
cannot apply the AIT theorem. However, since Φ(∞) = 1, we
see that as σ → 0+ that both a → 1 and b → 1, so capacity
approaches zero. Since there exist σ > 0 such a = Fσ(θ) ,=
Fσ(θ− 1) = b, we that that capacity (which is continuous) is
increasing for some interval of σ.

Thus, there is SR for θ > 1
Corollary 4.1: For θ ∈ [.5, 1), capacity decreases from a

limiting value of 1 down to a limiting value of 0, and for
θ = 1, capacity decreases from the limiting Z-channel capacity
of ≈ .3219 down to a limiting value of 0. In addition, for θ > 1
the plot of capacity will exhibit at least one hump (see Figure
6).

Proof:
— For θ ∈ [.5, 1)
As σ → 0+, (a, b) → (1, 0), so Cθ(0) → 1.
As σ → ∞, (a, b) → (1/2, 1/2), so Cθ(∞) → 0.
— For θ = 1
As σ → 0+, (a, b) = (1, 1/2), so Cθ(0) →≈ .3219.
As σ → ∞, (a, b) → (1/2, 1/2), so Cθ(∞) → 0.
— For θ > 1
As above, as σ → 0+, both a → 1 and b → 1, so capacity
approaches zero. As σ → ∞ both a → 1/2 and b → 1/2,
so capacity approaches zero. Therefore, there is at least one
“hump” in the plot.

V. KOSKO BIPOLAR THRESHOLD SYSTEM

Say we have a (0, 1|2 ; θ′;N (0,σ′2)) threshold system.
Consider a normalization such that θ = 2θ′ − 1 and σ = 2σ′,
and let the channel inputs {-1,1} replace {0,1} respectively.

The behavior of (0, 1|2 ; θ′;N (0,σ′2)) threshold system is
the same as a (−1, 1|2 ; θ;N (0,σ2)) threshold system, where
θ = 2θ′ − 1 and σ = 2σ′. This means we identify the closed
interval [0, 1] with [−1, 1] under the mapping x → 2x−1 and



we analyze (−1, 1|2 ; 2θ′ − 1;N (0, 2σ′2)) and the SR regions
are the same.

So for a (−1, 1|2 ; 2θ′−1;N (0, 2σ′2)) threshold system we
have
a = P (−1 + N (0,σ2) ≤ θ) = P (N (0,σ2) ≤ θ + 1) =
Fσ(θ + 1) = F2σ′(2θ′) = Φ(θ′/σ′), and
b = P (1 +N (0,σ2) ≤ θ) = P (N (0,σ2) ≤ θ − 1) =
Fσ(θ − 1) = F2σ′(2θ′ − 2) = Φ ((θ′ − 1)/σ′).
So, the channel matrix is of the form

M =

(
a 1− a
b 1− b

)
=



Fσ(θ + 1) Fσ(θ + 1)

Fσ(θ − 1) Fσ(θ − 1)





=




Φ
(

θ′

σ′

)
Φ
(
θ′

σ′

)

Φ
(

θ′−1
σ′

)
Φ
(
θ′−1
σ′

)



 . (20)

Therefore, we see that the channel matrix for the
(−1, 1|2 ; θ;N (0,σ2)) threshold system is the same as the
channel matrix for the (0, 1|2 ; θ′;N (0,σ′2)), up to a normal-
ization. In fact, there is nothing special about ±1, so let us
use ±A,A > 0 for the X inputs to the system (and channel).

For a (−A,A|2 ; θ;N (0,σ2)) threshold system, we denote
the Shannon channel capacity with θ fixed and variable σ as
Cθ(σ).

Definition 5.1: We say that a (−A,A|2 ; θ;N (0,σ2))
threshold system exhibits SR (as a function of σ) iff there
exists 0 < σ1 and σ2 such that σ1 < σ2 and Cθ(σ1) < Cθ(σ2).

Theorem 5.2: If we map the interval [0, 1] → [−A,A]
under the affine map x → A(2x − 1) and set θ :=
A(2θ′ − 1), and σ := 2Aσ′, then the channel matrices, as
functions of σ′ and θ′, for the (0, 1|2 ; θ′;N (0,σ′2)) and
(−A,A|2 ; θ;N (0,σ2)) threshold systems are the same. Fur-
thermore, the (−A,A|2 ; θ;N (0,σ2)) threshold system ex-
hibits SR if and only if θ /∈ [−A,A], and its capacity, as
a function of σ, exhibits a symmetry about 0.

Proof: For the (−A,A|2 ; θ;N (0,σ2)) threshold system
a = P (−A + N (0,σ2) ≤ θ) = P (N (0,σ2) ≤ θ + A) =
Fσ(θ +A) = F2Aσ′(2Aθ′) = Φ(θ′/σ′), and
b = P (A+N (0,σ2) ≤ θ) = P (N (0,σ2) ≤ θ −A)
= Fσ(θ −A) = F2Aσ′(2Aθ′ − 2A) = Φ ((θ′ − 1)/σ′).
So, by Thm 4.2, the (−A,A|2 ; θ;N (0,σ2)) threshold system
exhibits SR if and only if θ′ /∈ [0, 1], which, since θ′ = θ+A

2A ,
is equivalent to θ /∈ [−A,A].5

V-A. Non-zero Mean
Up to now we have been looking at how θ relates to the

interval [−A,A] with additive disturbance N (0,σ2)). Now let
us consider additive disturbance with non-zero mean, that is
N (µ,σ2)). For a (−A,A|2 ; θ;N (µ,σ2)) threshold system we
denote the Shannon channel capacity with θ fixed and variable
σ as Cθ(σ).

5At this point we are not concerned with which standard deviation value
maximizes capacity, so we do not concern ourselves with the distinction
between σ and σ′. We include this footnote to assure the reader that we
have not forgotten about the normalization.

Definition 5.3: We say that a (−A,A|2 ; θ;N (µ,σ2))
threshold system exhibits SR (as a function of σ) iff there
exists 0 < σ1 and σ2 such that σ1 < σ2 and Cθ(σ1) < Cθ(σ2).

Consider the map x → A(2x− 1) + µ and set
θ := A(2θ′ − 1) + µ, and σ := 2Aσ′.

So, for a (−A,A|2 ; θ;N (µ,σ2)) threshold system, we have
that a = P (−A+N (µ,σ2) ≤ θ) = P (N (µ,σ2) ≤ θ+A) =

Φ
(

θ+A−µ
σ

)
= Φ (θ′/σ′), and similarly b = Φ

(
θ−A−µ

σ

)
=

Φ ((θ′ − 1)/σ′). So there will be SR if and only if θ′ /∈ [0, 1].
However, since θ′ = θ+A−µ

2A , this is equivalent to
Theorem 5.4: The (−A,A|2 ; θ;N (µ,σ2)) threshold sys-

tem exhibits SR if and only if θ /∈ [µ − A, µ + A], or
equivalently, µ /∈ [θ −A, θ +A].

We consider Kosko’s FIT [5, Thm. 1], [6], [7] in light of
AIT. Note, his region of interest is µ /∈ [θ −A, θ +A] .

V-B. Kosko Formulation
We use [6, Thm. 1.1, Thm 1.2] for Kosko’s FIT.
1) Instead of our Eq. (8), Kosko has the slightly different

Y =

{
o1, if R < θ;

o2 if R ≥ θ.
(21)

This has the effect of changing the closed interval
[θ −A, θ +A] to the open interval (θ −A, θ +A).

2) Kosko requires the input signal to be subthreshold; that
is A < θ. We do not.

3) We restricted the disturbance noise to be Gaussian,
Kosko allows much more freedom, and in fact studies
non-finite variances. We will address this in future
work. Please note that the “If” part of our proof is
essentially the same as Kosko’s so there should be no
problem with non-Gaussian distributions (at least those
with finite variance).

4) The “Only If” part our our proof relies on AIT. We
show that the capacity is monotone decreasing. Kosko
shows that capacity decreases from the maximal value
(obtained from the limit when σ → 0+), but he
does not show that there are no local maxima. This is
an important distinction. This is why our generalized
definition of SR is as given in Def. 5.3.

VI. CAPACITY APPROXIMATIONS

In [11], [12], [13] we showed how capacity of the channels
under study in this paper can be simply approximated and
bounded by simple functions of the determinant of the channel
matrix. For the (−A,A|2 ; θ;N (µ,σ2)) threshold system we
have:

1

2 ln(2)

(
Φ

(
θ +A− µ

σ

)
− Φ

(
θ −A− µ

σ

))2

≤

Cσ(θ) ≤ Φ

(
θ +A− µ

σ

)
− Φ

(
θ −A− µ

σ

)
. (22)



We want to see when these lower and upper approximations
exhibit SR. That is simply done by taking the first derivative
with respect to σ and setting it to zero. Since d

dσk(a− b)2 =
2k(a − b) · d

dσ (a − b), and a > b, we see that it suffices to
consider d

dσ

(
Φ
(

θ+A−µ
σ

)
− Φ

(
θ−A−µ

σ

))
= 0.

d

dσ

(
Φ

(
θ +A− µ

σ

)
− Φ

(
θ −A− µ

σ

))
=

d

dσ

(
1√
2π

∫ θ+A−µ
σ

θ−A−µ
σ

e−
t2

2 dt

)
=

1√
2π

[
−(θ +A− µ)

σ2
e

−( θ+A−µ
σ )2
2 − −(θ −A− µ)

σ2
e

−( θ−A−µ
σ )2
2

]
.

Setting the above to zero we arrive at:
θ +A− µ

θ −A− µ
= e

(θ+A−µ)2−(θ−A−µ)2

2σ2 (23)

θ − (µ−A)

θ − (µ+A)
= e

4A(θ−µ)

2σ2 (24)

Provided that the LHS of Eq. (24) is positive, which is true
iff θ /∈ [µ−A, µ+A], we arrive at

ln

(
θ +A− µ

θ −A− µ

)
=

4A(θ − µ)

2σ2
(25)

σ2 =
2A(θ − µ)

ln
(

θ−(µ−A)
θ−(µ+A)

) . (26)

Provided that the RHS if the above is positive, we have

σ =

√√√√
2A(θ − µ)

ln
(

θ−(µ−A)
θ−(µ+A)

) . (27)

If θ > µ+A) then θ−(µ−A)
θ−(µ+A) > 1, if θ < µ−A) then

0 < θ−(µ−A)
θ−(µ+A) < 1. Therefore Eq. (27) has a solution iff

θ /∈ [µ−A, µ+A].
Definition 6.1: We call the σ derived from Eq. (27) the

critical sigma approximation, and denote it as σs̃r.
We note that in [13] we have given graphical evidence

for how well the algebraic determinant bounds approximate
capacity, and also how well σs̃r corresponds with the actual
sigma that locally maximizes capacity.

What is most interesting is that one can obtain σs̃r iff the
constraints of the FIT hold, that is θ /∈ [µ − A, µ + A], or
equivalently µ /∈ [θ−A, θ+A]. Therefore, our approximating
capacity by the determinant bounds gives us another form of
the FIT, which is derived solely from the algebraic properties
of the channel matrix. This holds promise for approximating
when more complex threshold systems exhibit SR.

VII. CONCLUSION AND FUTURE WORK

We have amplified the definition of stochastic resonance,
and shown how an algebraic approach to capacity and the
associated issues of SR is a valid approach. We have given
an alebraic proof for part of the FIT. We have shown how

determinant bounds can easily give us the regions where SR
occur.

In future work, we will analyze non-Gaussian distributions,
and see if our algebraic approach can be applied to more
complex systems. In particular, we want to see if our algebraic
results for (2,3) channels [12] can be applied to similar
threshold systems.
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